Expressiveness of Logic Programs under General Stable Model Semantics
نویسندگان
چکیده
The stable model semantics had been recently generalized to nonHerbrand structures by several works, which provides a unified framework and solid logical foundations for answer set programming. This paper focuses on the expressiveness of normal and disjunctive programs under the general stable model semantics. A translation from disjunctive programs to normal programs is proposed for infinite structures. Over finite structures, some disjunctive programs are proved to be intranslatable to normal programs if the arities of auxiliary predicates and functions are bounded in a certain way. The equivalence of the expressiveness of normal programs and disjunctive programs over arbitrary structures is also shown to coincide with that over finite structures, and coincide with whether NP is closed under complement. Moreover, to capture the exact expressiveness, some intertranslatability results between logic program classes and fragments of secondorder logic are obtained.
منابع مشابه
Logic Programs with Ordered Disjunction: First-Order Semantics and Expressiveness
Logic programs with ordered disjunction (LPODs) (Brewka 2002) generalize normal logic programs by combining alternative and ranked options in the heads of rules. It has been showed that LPODs are useful in a number of areas including game theory, policy languages, planning and argumentations. In this paper, we extend propositional LPODs to the first-order case, where a classical second-order fo...
متن کاملTwo results for prioritized logic programming
Prioritized default reasoning has illustrated its rich expressiveness and flexibility in knowledge representation and reasoning. However, many important aspects of prioritized default reasoning have yet to be thoroughly explored. In this paper, we investigate two properties of prioritized logic programs in the context of answer set semantics. Specifically, we reveal a close relationship between...
متن کاملExpressive Power and Complexity of Partial Models for Disjunctive Deductive Databases 1
This paper investigates the expressive power and complexity of partial model semantics for disjunctive deductive databases. In particular, partial stable, regular model, maximal stable (M-stable), and least undeened stable (L-stable) semantics for function-free disjunctive logic programs are considered, for which the expressiveness of queries based on possibility and certainty inference is dete...
متن کاملMinimal founded semantics for disjunctive logic programs and deductive databases
In this paper, we propose a variant of stable model semantics for disjunctive logic programming and deductive databases. The semantics, called minimal founded, generalizes stable model semantics for normal (i.e. non disjunctive) programs but differs from disjunctive stable model semantics (the extension of stable model semantics for disjunctive programs). Compared with disjunctive stable model ...
متن کاملPossibilistic and Extended Logic Programs
Based on our earlier work on partial logics and extended logic programs Wag91, Wag94, HJW96], and on the possibilistic logic of DLP94], we deene a compositional possibilistic rst-order logic with two kinds of negation as the logical basis of semi-possibilistic and possibilis-tic logic programs. We show that in the same way as the minimal model semantics of relational databases can be reened to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1412.0773 شماره
صفحات -
تاریخ انتشار 2014